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In this paper we study the unsteady flow of a weakly ionized inviscid 

gas between parallel walls in the presence of a transverse magnetic 

field. 

BY means of a Laplace transformation we obtain the exact solution of 

the problem under the assumption that we can neglect the drift of ions 

relative to the gas, and also the effects of compressibility. Reduction 

of the solution to real form is achieved for the case of ideally con- 

ducting walls. 

It is shown that in contrast to the usual case of isotropic conduct- 

ivity the nonstationary regime under consideration always has the nature 

of damped oscillations. 

1. Formulation of the problem. Let us consider the unsteady 

motion of a gas which conducts electricity between two parallel plates 

(the walls of the channel), subjected to a constant pressure gradient P x 
and with a uniform magnetic field perpendicular to the walls (Fig. 1). 

If OT (< 1, then the conductivity can be taken to be a scalar quantity 

(o is the cyclotron frequency of the charged particles, T is the mean 

time between collisions). Under these conditions in the problem under 

consideration not only the velocity but also the induced magnetic field 

has only a component in the direction of the imposed pressure gradient 

(OX), whilst the electric field and the current are directed along the 

axis of y. If, however, the condition DT << 1 is violated, then the con- 

ductivity will have an anisotropic character and the flow of gas will be 

complicated, since the vector of current density will acquire a component 

along the x-axis, causing in its turn a cross flow of the gas, and so on. 

8Or: 
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In what follows we shall assume that the relation oi~i << 1 is ful- 

filled for the ions. This enables us to neglect the effect of the drift 

f 

Fig. 1. 

of the ions relative to the gas and to make 

use of Ohm’s law in the form [l-3] 

w 1’: 
j+-&pH=o(E+vxH) (1.1) 

where j is the current density, 11 and E are 

the magnetic and electric fields, v is the 

velocity of the gas, CT is the conductivity, oe 

is the cyclotron frequency of the electrons, 

T* is the mean time between collisions of 

electrons with ions and neutral particles 

(assuming the CCSM system, where the coeffi- 

cient of magnetic permeability is taken as 

equal to unity). 

‘Ihe systetn of equations of magnetohydrodynamics for an ideal incom- 

pressible medium takes the form (p is the density, p is the pressure of 

the gas) 

+(vV)v]=-Vp+jxH, div v = 0 

rotE= - $, div H = 0, j = .&-rot H 

(14 

In the case under consideration the velocity vector and the induced 

magnetic field have components only along the axes of x and y, which de- 

pend upon z and t and satisfy a system of partial differential equations. 

After introducing the dimensionless quantities 

u=‘, h=H E ez-.-..- 
% HO ’ voHo ’ 

r;=+, z+ 

(1.3) 
R,, = 4nGavo, S = He, Hll p = o,‘c* H = -& HOT* 

(“0 is a characteristic velocity, e and m are the charge and mass of the 

electron) the aforesaid system takes the form 

If we define the components of pressure gradient by the relations 
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(1.5) 

then all the equations of magnetohydrodynamics are satisfied when the 

components of the electric field are given by the following formulas 

p ah2 
e, = uyhx - u,hy - I_ ___ 

2H, dc 
(1.6) 

'I&e system (1.4) has to be solved from zero initial conditions 

U, = u,, = h, = h,, = U when ‘t = 0 (1.i) 

and boundary conditions which ensure continuity of tangential components 

of electric and magnetic fields on passing from the region of the gas t.o 

the walls of the channel (the index * relates to the region of the walls) 

&.==hhx*, h,=h,“, e,=e,“, er,=eu* whpn;y=,~ (1.8) 

Accordingly, to solve the problem in the case of walls of finite con- 

ductivity (a*) it is necessary along with the system (1.4) to consider 

the equations of electrodynamics in the region \<I > 1 (we neglect the 

displacement current) 

ah * ae * 
_!I = Rm*e,*, 3 = a1z?,* de * ah * 

_K-=z._ 
ac a: dt ’ d: (I?, 

with the initial conditions 

h*=h*==O whenT=O .r I, (,I .10: 

It will be assumed that when I<\ - 0 the electromagnetic fields re- 

main bounded. Accordingly the problem reduces to solution of the systems 

(1.4) and (1.9) with the boundary conditions (1.8) and the initial con- 

ditions (1.7) and (1.10). 

2. 'Ihe general solution of the problem. Applying to (1.4) the 
Laplace transformation and introducing the notation 

we obtain for the region 151 < 1 allowing for the initial conditions 
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(1.7) 
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PUS? = 5-t +L’, pi-J, = $ H,’ 

pH, = + (Hz” + Pff,“) + u,‘, PHII = + ($ - PH,“) + U, 

(2.2) 

m m 

Eliminating the quantities Uz and Uy leads to the fo I1 
relating the Laplace transforms of the induced magnetic 

(i+$)H;+~EI,"-RR,pH,=O 

@+$I 

(15 
H,” - PH,” - R,pH, = 0 

lowing system 

fields 

<I) (2.3) 

If we set 

cp = h, - ih ?I (2.4) 

then the system (2.3) can be written in the form of a single equation 

(I-+@+ $jW-pR,@=O (2.5~ 

S,l~loying the Laplace transformation in the solution of EcIuations (1.9) 

with conditions (1.10) leads to the following system for the region 

151 ' 1: 

H *'=R 
X 

*E * 
77% ?I, jH,* = &*', H,*' = - R,*E,*, pH,* = -E,*’ (2.6) 

Solving the equations 

H,*” - pR,*H,* = 0, H,*” - pR,*H,* = 0 (2.i) 

which follow from (2.6), and taking into consideration the condition of 

boundedness when 151 - 00, we have (here and in what follows the upper 

sign relates to the region : > 1, whilst the lower sign refers to the 

region j < - 1) 

H,* = Mexp(- 15 j vrp,, H,* = 1\ exp (- 15 1 vR,*p) (2.8) 

The relations so obtained enable us, without finding the intensity of 

the electromagnetic field in the channel walls, to construct the bound- 

ary conditions required for the solution of the fundamental equation 

(2.5). At the same time, applying the Laplace transformation to Formulas 
(1.6) and eliminating the quantities Uz and Uy with the help of Equa- 

tions (2.2), we obtain 
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Now, expressing the electric fields 

magnetic fields 

in the walls in terms of the 

&* = t mH,*, E,* = ‘f I/p / R,*H,* (2.1.0) 

and taking the Laplace transforms of (1.8), we obtain the required bound- 

ary conditions: 

which can be written in the following form 

[(l+i~+~)~fR,I/p/R,,*cD]” +‘+=o 
i=il 

(2.12) 

Accordingly, the problem consists in the solution of Equation (2.5) 

with the boundary conditions (2.12). 

Ry virtue of the fact that the fields hx and hy are odd with respect 

to the coordinate j we obtain 

(2.13) 

where the quantity A is found from the boundary conditions (2.12) 

A=--- 
1 P% 

-- 

(1 + ip + S / p) TcoshT + H, 1/p / K,“sirZ~e -7 

(2.14) 

General formulas for the induced magnetic fields are easily obtained 

now with the help of the inversion theorems of Riemann and F-!el!in 

h, = l3e cp, h, = - 1111 cp (2.15) 
b+im 

P ’ 
‘P=-gi \ 

sinhrg 

pi ww i- VP i R,,,*s~w 

erp (~4 dp (2.16) 
b-ice P” 

Similar expressions for the velocities uz and uY can be found, start- 

ing from the following relation which arises from (2.3) 
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(2.17) 

Accordingly 

u,==Pr+Re$, Uy= -Im+ (2.18) 

where 

With this, the general solution of the problem can be regarded as 

complete . 

The actual carrying out of the calculations putting the solution so 

obtained into tangible form turns out to be rather complicated, which is 

connected in particular with the multi-valued nature of the transformed 

functions and the mixed character of the spectrum of eigenvalues (see 

[4], where similar circumstances occurred in the flow of a viscous fluid 

with isotropic conductivity). Accordingly in what follows we shall re- 

strict ourselves to the special case of ideally conducting channel walls. 

3. Flow in a channel with ideally conducting walls. Setting 

R * = ~0 in the formulas of the preceding section, we obtain the general I 
solution of the problem in the following form: 

(3.1) 

where, as before, we have introduced the notation 
(3.2) 

b+ico b+im 

P 
’ ‘P=-Pni 

\ 
ICf!!!S exp (pr) dp, 

b_‘ioo Pcorb T 
$c$ exp (PT) dp 

Singular points of the integrands occur at the poles p = 0 and p = pn: 

the latter are obtained by solution of the equation cash y = 0 and give 

formulas (n = 0, 1, 2, . . .I 

pnl,O =; -g 
m 

(I++) -1T 1/ l- 4RmS [ 
r- 

h,,’ (1 + q3)’ 1 ’ 
h = v ITI (3.3) 

” 

Application of the theorem of residues leads to the solution of the 

problem in real form 
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h, = h,” + 2PR, Re F,, h, = h,’ - 2PR, Im F, 

u, = uro + 2PS Re F,, uu = uyo - 2PS Im F, 

where we have introduced the following notation: 

(3.4) 

(3.5) 

F, (5, T) = & exp (P,,T) exp (P,,T) (-I)nsin h,c 

P n1 P n2 I An2 I/i - 4R,,,S / A,2 (I++)2 

(- l)n cos h,C 
F, (5, r) = & 5 [ exp;;lr) _ !%?$) j ~ 

n=o n1 
h, 1/l - 4R,S / h,” (1 + i/3)2 

and separated out the steady regime 

Ll IO 20 30 40 

Fig. 2. 

Moreover, there is flowing through 

density jY = - P,/H,, and there is 

Setting p = 0 

fields and veloc i 

h"=-Fc 

Accordingly, in the case of 

ideally conducting channel walls 

there exists a steady regime, in 

which gas flows uniformly with velo- 

city vzo = Pz/H,2 u in the direction 
of the applied pressure gradient Pz, 
but also with velocity u,,' = - ~?Iv(: 

in the perpendicular direction. 

the gas a constant current with 

no electric field. 

in the solution so obtained, we find the value of the 

ties for the case of isotropic conductivity*: 

(--)nsink5 

I,2 r/i - 4R,S / hn2 

(--jn coshJ 
h, 1/i - 4R,,S I h,2 

(3.7) 

where 

-- 

* A similar problem is considered in [51. 
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(3.8) 

From the formulas thus obtained it follows that when SR, < (rr/4)' all 

the 4, are real negative numbers, so that the transitional regime has an 

aperiodic nature. If, however, Sfln > (s/4)', then a certain finite 

number (N) of the numbers g, are complex (with negative real parts) and 

the transition to the steady regime takes place by way of damped oscilla- 

tions with frequencies 

&%I 4R s 

2R,a 
“-1 

An? 
(O<n~N---1) 

It appears that the presence of anisotropic conductivity brings an 

essential change in the nature of the transition process, namely, the 

oscillatory process occurs for any arbitrarily small value of the mag- 

netic Reynolds' number RR. 

In order to show this, let us consider the asymptotic expressions for 

the fields and velocities arising from formulas (3.4) and (3.5) when 

Rm << 1 (h = S/(1 + p*)): 

h, = _ ‘ff”’ 7 - j [ 1 - exp (- Id) cos hpz] + 0 (Rm2) 

hu=_~ 5 exp (- hr) sin Q3z + 0 (Rm2) 

u, = $ [ I- exp (- hz) (cos ?Qz - p sin I+)] + 0 (I?,) 

uu = - $ [/3 - exp (- hz) (sin hpz + /3 cos I@)] + 0 (R,) 

(3.9) 

It will at the same time be assumed that the magnetic interaction 

parameter S is a quantity of order unity. Ihis is the case, for example, 

for sufficiently strong magnetic fielf_ls. 

From the last formulas it is clear that when Rs << 1 and p # 0 (in 

the presence of anisotropic conductivity) the transition regime is 

accomplished in the form of oscillations with frequency Ap, whereas 

when p = 0 (in the absence of anisotropy) it has a purely aperiodic 

nature. 

In conclusion we present graphs of the values of the transverse 

fluxes (Figs. 2 and 3) and the total electric currents flowing in tile 

gas (Fig. 4), constructed with the help of Formulas (3.9) for various 

values of the time *CT = !f,'o/pt and the parameter of anisotropy F and 

referred to the quantities 2Pv,o/S and l’Rn(l,/?~S, respectively. 
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Fig. 4. 

Fig. 3. 
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